2 Haziran 2014 Pazartesi

Karakökü kim buldu,


Karekök İşareti : √¯ işaretinin tarihi 1525'e uzanır.Bu simgeye benzer bir simge,köklü sayılar için Alman Matematikçi Christoff Rudolff (1499-1545) tarafından Coss adlı kitabında kullanılmıştır.Coss,Almanca dilinde yayımlanmış ilk cebir kitabıdır.

Coss,cosa'dan gelir.Cosa'da "bilinmeyen" anlamına kullanılan "şey" in Latincesidir.Cebircilere uzunca bir zaman bu yüzden "kosistler" denirdi.Cebire de kosik sanat denmiştir.
Yine √¯ işareti için bir ifade de Latince kök demek olan radix kelimesinin baş harfinden, yani küçük r harfinden türetildiği söylenir.

Kare kök matematiksel bir ifadedir. Bir sayının kök içine alınması, o sayının (1/2). kuvvetinin alınması demektir . Kare tabiri sayının alınan kökünün derecesini ifade eder. Örneğin 9 u kare köke alırsak, dokuz 3'ün karesi olduğundan kök dışına 3 olarak çıkar. Küp kök de örneğin 27 'yi alırsak, 27 de 3*3*3 demektir yani 3'ün küpüdür ve kök dışına 3 diye çıkar.

Batılıların El Gabra(Algebra=cebir) dediği Cebir ilminin kurucusu kesin olarak bilinemekle birlikte Arap Matematikçi El Cabir Bin Hayyam'dır.

Arşimed ayrıca sayısının değerini çok yaklaşık biçimde bulmuştur ve karekök bulma konusunda çalışmıştır. Karekök konusunda da o döneme kadar ulaşılan en iyi sonuçlara ulaşmış ve çok yaklaşıklıkla karekök hesabı yapmayı başarmıştır.

"El Cabir baştan sona kadar cebir ilmini kurdu. 1, 2 ve 3. dereceden denklemlerin çözümlerini gösterdi. Karekök ve küpkök almayı gösterdi."
Harezmi de cebirin kurucularındandır ama cebirin isim babası El Cabir'dir! İngilizce'deki Algebra kelimesi de bunu kanıtlamaktadır!

Kareköklü sayıların tanımlanması nasıl yapılır?

Karekök içinde çarpım veya bölüm durumunda verilen ifadeler 2 veya 2 nin katı kuvvetinde yazılabilirse karekök dışına çıkarılabilirler.
aR+ ,m Z ise 2m = a2m/2= a m
a,b R+ve b ≠0 ise 2.b2 = a.b 2/b2 = a/b dir.
a,b R+ ve nZ olmak üzere ; 2n.b = an

Ayrıca buda var

Kare kök matematiksel bir ifadedir. Bir sayının kök içine alınması, o sayının (1/2). kuvvetinin alınması demektir . Kare tabiri sayının alınan kökünün derecesini ifade eder. Örneğin 9 u kare köke alırsak, dokuz 3'ün karesi olduğundan kök dışına 3 olarak çıkar. Küp kök de örneğin 27 'yi alırsak, 27 de 3*3*3 demektir yani 3'ün küpüdür ve kök dışına 3 diye çıkar.
Batılıların El Gabra(Algebra=cebir) dediği Cebir ilminin kurucusu kesin olarak bilinemekle birlikte Arap Matematikçi El Cabir Bin Hayyam'dır.

Arşimed ayrıca sayısının değerini çok yaklaşık biçimde bulmuştur ve karekök bulma konusunda çalışmıştır. Karekök konusunda da o döneme kadar ulaşılan en iyi sonuçlara ulaşmış ve çok yaklaşıklıkla karekök hesabı yapmayı başarmıştır.

"El Cabir baştan sona kadar cebir ilmini kurdu.
1, 2 ve 3. dereceden denklemlerin çözümlerini gösterdi. Karekök ve küpkök almayı gösterdi."


Harezmi de cebirin kurucularındandır ama cebirin isim babası El Cabir'dir! İngilizce'deki Algebra kelimesi de bunu kanıtlamaktadır
                    


                            karekök matematikteki yeri





Başlığın diğer anlamları için Karekök (anlam ayrımı) sayfasına bakınız.
Matematikte negatif olmayan bir gerçel x\! sayısının temel karekök bulma işlemi \sqrt x şeklinde gösterilir ve karesi (bir sayının kendisiyle çarpılmasının sonucu) x olan negatif olmayan bir gerçel sayıyı ifade eder.

Örneğin, \sqrt 9 = 3 'tür çünkü 3^2 = 3\times3 = 9 'dur.

Bu örneğin de ileri sürdüğü gibi karekök bulma, ikinci dereceden denklemlerin (genel olarak ax^2+bx+c=0. \, tipi denklemler) çözümünde kullanılabilir.

Karekök almanın sonucunda iki çözüm vardır. Negatif olmayan sayılar için bunlar temel kare kök ve negatif kare köktür. Negatif sayıların kare köklerini tanımlamak için ise sanal sayı ve karmaşık sayılar kavramları geliştirilmiştir.

Pozitif tam sayıların kare kökleri genel olarak irrasyonel sayılardır (iki tam sayının kesiri olarak ifade edilemeyen sayılardır).

Örneğin \sqrt 2, tam olarak m/n (m ve n tam sayı olacak şekilde) şeklinde yazılamaz. Buna karşın bu sayı kenarları 1 birim olan bir karenin köşegen uzunluğuna eşittir.

\sqrt 2 irrasyonel olduğunun bulunması Pythagoras'ın bir takipçisi olan Hippasus'a atfedilir. Bu konuyla ilgili şöyle bir rivayet anlatılır; Sayılara mutlak bir inançla bağlı olan Pisagor'un takipçilerinden birisi olan Metanpontumlu Hippasus, dik kenarları 1 birim olan bir dik üçgenin hipotenüs uzunluğunun rasyonel bir sayı olmadığını kanıtlamış. Bunu kabullenemeyen Pisagor, Hippasus'un kanıtlarının aksini de gösteremeyince, açık denizde Hippasus'u bir tekneden suya attırmış.

Kare kök sembolü (\sqrt{\ } ) ilk olarak 16. yüz yılda kullanılmaya başlanmıştır. Latince kök demek olan radix kelimesinin baş harfinden, yani küçük r harfinden türetildiği söylenir.

Karekök Ortalama (matematikte ingilizcesinden dolayı ('root mean square', kısaltması RMS ya da rms) olarak da kullanılır), ayrıca kuadratik ortalama olarak da bilinir. Değişen miktarların büyüklüğünün ölçülmesinde kullanılan istatistiki bir ölçüttür. Değişimin artı ve eksi yönde olduğu dalgalarda özellikle çok faydalıdır.


Sürekli olarak değişen bir fonksiyonun sürekli olmayan değer serisi için hesaplanabilir. Karekök ortalama ismi karelerin ortalamasının karekökünün alınmasından gelir.